The paper presents the mechanical and hygrothermal properties of cement mortars containing bio-powders made from lavender waste and black pine wood. The wastes were mechanically ground with a hammer mill to a fraction not exceeding 0.5 mm and then dried in air-dry conditions. The influence of bio-additives in amounts of 1.5% and 2.5% of the overall mortar volume was tested. The aim of the paper was to determine the impact of bio-additives on the mechanical and hygrothermal properties of the tested cement mortars. This publication included tests of compressive and flexural strength, elastic modulus, water absorption, absorption due to capillary rise, sorption and desorption properties, thermal properties, microstructural tests using mercury intrusion porosimetry and SEM, and EDS. The main conclusions of the research indicate that mortars with both 1.5% and 2.5% bio-powders are characterized by strong bactericidal properties, lower sorption properties at high air humidity, lower thermal conductivity, reduced compressive strength by 22–27%, no significant effect on the flexural strength, and significant reduction in capillary action of mortars both with short-term and long-term water exposure.