A novel plate‐like nano‐sorbent based on copper/cobalt/chromium layered double hydroxide was synthesized by a simple coprecipitation method. The synthesized nanoparticels were introduced into a stainless steel cartridge using a dry packing method. Then, the packed cartridge was introduced as a novel on‐line “packed in‐tube” configuration and followed by high performance liquid chromatography for the determination of trace amounts of ∆9‐tetrahydrocannabinol from biological samples and cannabis leaves. The as‐prepared sorbent exhibited long lifetime, good chemical stability, and high anion‐exchange capacity. Several important factors affecting the extraction efficiency, such as extraction and desorption times, pH of the sample solution and flow rates of the sample and eluent solutions, were investigated and optimized. Under optimized conditions, this method showed good linearity for ∆9‐tetrahydrocannabinol in the ranges of 0.09–500, 0.3–500, and 0.4–500 µg/L with coefficients of determination of 0.9999, 0.9991, and 0.9994 in water, serum and plasma samples, respectively. The inter‐ and intra‐assay precisions (n = 3) were respectively in the ranges of 1.8–4.6% and 1.9–4.0% at three concentration levels of 10, 50, and 100 µg/L. The limits of detection were also in the range of 0.02–0.1 µg/L.