Background
There is a well-established relationship between 12-lead electrocardiogram (ECG) and age and mortality. Furthermore, there is increasing evidence that ECG can be used to predict biological age. However, the utility of biological age from ECG for predicting mortality remains unclear.
Methods
This was a single-center cohort study from a cardiology specialized hospital. A total of 19,170 patients registered in this study from February 2010 to March 2018. ECG was analyzed in a final 12,837 patients after excluding those with structural heart disease or with pacing beats, atrial or ventricular tachyarrhythmia, or an indeterminate axis (R axis > 180°) on index ECG. The models for biological age were developed by principal component analysis (BA) and the Klemera and Doubal’s method (not adjusted for age [BAE] and adjusted for age [BAEC]) using 438 ECG parameters. The predictive capability for all-cause death and cardiovascular death by chronological age (CA) and biological age using the three algorithms were evaluated by receiver operating characteristic analysis.
Results
During the mean follow-up period of 320.4 days, there were 55 all-cause deaths and 23 cardiovascular deaths. The predictive capabilities for all-cause death by BA, BAE, and BAEC using area under the curves were 0.731, 0.657, and 0.685, respectively, which were comparable to 0.725 for CA (p = 0.760, 0.141, and 0.308, respectively). The predictive capabilities for cardiovascular death by BA, BAE, and BAEC were 0.682, 0.685, and 0.692, respectively, which were also comparable to 0.674 for CA (p = 0.775, 0.839, and 0.706, respectively). In patients aged 60–74 years old, the area under the curves for all-cause death by BA, BAE, and BAEC were 0.619, 0.702, and 0.697, respectively, which tended to be or were significantly higher than 0.482 for CA (p = 0.064, 0.006, and 0.005, respectively).
Conclusion
Biological age by 12-lead ECG showed a similar predictive capability for mortality compared to CA among total patients, but partially showed a significant increase in predictive capability among patients aged 60–74 years old.