Estimating the infection risks of indoor environments comprises the assessment of the behavior of virus-laden aerosols, i.e., their spreading, mixing, removal by air purifiers, etc. A promising experimental approach is based on using non-hazardous surrogate aerosols of a similar size, e.g., salt particles, to mimic virus aerosol behavior. This manuscript addresses the issue of how a successful transfer of such experiments can be accomplished. Corresponding experiments in two very different environments, a large community hall and a seminar room, with the optional use of air purifiers in various constellations, are conducted. While high particle concentrations are advantageous in terms of avoiding the influence of background aerosol concentrations, it is shown that the appropriate consideration of aggregation and settling are vital to theoretically describe the experimentally determined course of particle concentrations. A corresponding model equation for a well-mixed situation is derived, and the required parameters are thoroughly determined in separate experiments independently. It is demonstrated that the clean air delivery rates (CADRs) of air purifiers determined with this approach may differ substantially from common approaches which do not explicitly take aggregation into account.