The aim of this study was to determine whether the iPad Pro 12th generation LiDAR sensor is useful to measure tree diameter at breast height (DBH) in natural boreal forests. This is a follow-up to a previous study that was conducted in a research forest and identified the optimal method for (DBH) estimation as a circular scanning and fitting ellipses to 4 cm stem cross-sections at breast height. The iPad Pro LiDAR scanner was used to acquire point clouds for 15 sites representing a range of natural boreal forest conditions in Ontario, Canada, and estimate DBH. The secondary objective was to determine if tested stand (species composition, age, density, understory) or tree (species, DBH) factors affected the accuracy of estimated DBH. Overall, estimated DBH values were within 1 cm of actual DBH values for 78 of 133 measured trees (59%). An RMSE of 1.5 cm (8.6%) was achieved. Stand age had a large effect (>0.15) on the accuracy of estimated DBH values, while density, understory, and DBH had moderate effects (0.05–0.14). No trend was identified between accuracy and stand age. Accuracy improved as understory density decreased and as tree DBH increased. Inertial measurement unit (IMU) and positional accuracy errors with the iPad Pro scanner limit the feasibility of using this device for forest inventories.