Lightning strikes are prevalent and inevitable natural phenomena that might cause damages during interaction with building structures and, in some cases, culminate in fires. During the last decades, several lightning strikes have caused considerable damages to cultural and heritage buildings. Furthermore, recent studies indicated a plausible connection between climate changes due to global warming and variations in the frequency and intensity of lightning. The evaluation of the structural efficiency and resilience of cultural buildings to global changes and natural risks appears significant in the light of the current scientific debate. This research aims at the assessment of lightning strikes’ effects on ancient heritage binding materials through the characterization of their thermal and electrical conductivity properties. This study focused on the performance evaluation of green and low-cost mortars based on the use of organic additives. Lime samples were reverse engineered by using a mixture of organics (fig, jaggery, black grape, banana, kadukai), which comprises the most common additives used in traditional Indian mortars. The reliability of the organic mixture in enhancing the resilience of masonry to lightning strikes was analyzed by using electromagnetic field simulation.