Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
IntroductionIn the context of climate variability, rapid and accurate estimation of winter wheat yield is essential for agricultural policymaking and food security. With advancements in remote sensing technology and deep learning, methods utilizing remotely sensed data are increasingly being employed for large-scale crop growth monitoring and yield estimation.MethodsSolar-induced chlorophyll fluorescence (SIF) is a new remote sensing metric that is closely linked to crop photosynthesis and has been applied to crop growth and drought monitoring. However, its effectiveness for yield estimation under various data fusion conditions has not been thoroughly explored. This study developed a deep learning model named BO-CNN-BiLSTM (BCBL), combining the feature extraction capabilities of a convolutional neural network (1DCNN) with the time-series memory advantages of a bidirectional long short-term memory network (BiLSTM). The Bayesian Optimization (BOM) method was employed to determine the optimal hyperparameters for model parameter optimization. Traditional remote sensing variables (TS), such as the Enhanced Vegetation Index (EVI) and Leaf Area Index (LAI), were fused with the SIF and climate data to estimate the winter wheat yields in Henan Province, exploring the SIF’s estimation capabilities using various datasets.Results and DiscussionThe results demonstrated that the BCBL model, integrating TS, climate, and SIF data, outperformed other models (e.g., LSTM, Transformer, RF, and XGBoost) in the estimation accuracy, with R²=0.81, RMSE=616.99 kg/ha, and MRE=7.14%. Stepwise sensitivity analysis revealed that the BCBL model reliably identified the critical stage of winter wheat yield formation (early March to early May) and achieved high yield estimation accuracy approximately 25 d before harvest. Furthermore, the BCBL model exhibited strong stability and generalization across different climatic conditions.ConclusionThus, the BCBL model combined with SIF data can offer reliable winter wheat yield estimates, hold significant potential for application, and provide valuable insights for agricultural policymaking and field management.
IntroductionIn the context of climate variability, rapid and accurate estimation of winter wheat yield is essential for agricultural policymaking and food security. With advancements in remote sensing technology and deep learning, methods utilizing remotely sensed data are increasingly being employed for large-scale crop growth monitoring and yield estimation.MethodsSolar-induced chlorophyll fluorescence (SIF) is a new remote sensing metric that is closely linked to crop photosynthesis and has been applied to crop growth and drought monitoring. However, its effectiveness for yield estimation under various data fusion conditions has not been thoroughly explored. This study developed a deep learning model named BO-CNN-BiLSTM (BCBL), combining the feature extraction capabilities of a convolutional neural network (1DCNN) with the time-series memory advantages of a bidirectional long short-term memory network (BiLSTM). The Bayesian Optimization (BOM) method was employed to determine the optimal hyperparameters for model parameter optimization. Traditional remote sensing variables (TS), such as the Enhanced Vegetation Index (EVI) and Leaf Area Index (LAI), were fused with the SIF and climate data to estimate the winter wheat yields in Henan Province, exploring the SIF’s estimation capabilities using various datasets.Results and DiscussionThe results demonstrated that the BCBL model, integrating TS, climate, and SIF data, outperformed other models (e.g., LSTM, Transformer, RF, and XGBoost) in the estimation accuracy, with R²=0.81, RMSE=616.99 kg/ha, and MRE=7.14%. Stepwise sensitivity analysis revealed that the BCBL model reliably identified the critical stage of winter wheat yield formation (early March to early May) and achieved high yield estimation accuracy approximately 25 d before harvest. Furthermore, the BCBL model exhibited strong stability and generalization across different climatic conditions.ConclusionThus, the BCBL model combined with SIF data can offer reliable winter wheat yield estimates, hold significant potential for application, and provide valuable insights for agricultural policymaking and field management.
Understanding the intricate relationship between drought stress and corn yield is crucial for ensuring food security and sustainable agriculture in the face of climate change. This study investigates the subtle effects of drought stress on corn physiological, morphological, and spectral characteristics at different growth stages, in order to construct a new drought index to characterize drought characteristics, so as to provide valuable insights for maize recovery mechanism and yield prediction. Specific conclusions are as follows. Firstly, the impact of drought stress on corn growth and development shows a gradient effect, with the most significant effects observed during the elongation stage and tasseling stage. Notably, Soil and Plant Analyzer Development (SPAD) and Leaf Area Index (LAI) are significantly affected during the silking stage, while plant height and stem width remain relatively unaffected. Secondly, spectral feature analysis reveals that, from the elongation stage to the silking stage, canopy reflectance exhibits peak–valley variations. Drought severity correlates positively with reflectance in the visible and shortwave infrared bands and negatively with reflectance in the near-infrared band. Canopy spectra during the silking stage are more affected by moderate and severe drought stress. Thirdly, LAI shows a significant positive correlation with yield, indicating its reliability in explaining yield variations. Finally, the yield-related drought index (YI) constructed based on Convolutional Neural Network (CNN), Random Forest (RF) and Multiple Linear Regression (MLR) methods has a good effect on revealing drought characteristics (R = 0.9332, p < 0.001). This study underscores the importance of understanding corn responses to drought stress at various growth stages for effective yield prediction and agricultural management strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.