2022
DOI: 10.1080/02701367.2022.2053647
|View full text |Cite
|
Sign up to set email alerts
|

Evaluation of Match Results of Five Successful Football Clubs With Ensemble Learning Algorithms

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
3
0
1

Year Published

2023
2023
2024
2024

Publication Types

Select...
4
1

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(4 citation statements)
references
References 33 publications
0
3
0
1
Order By: Relevance
“…Grandes conjuntos de dados implicam em uma falha fora da memória. De acordo com Filiz, 23 eles ofereciam métodos líderes mundiais para educação em saúde mental, identidade setorial e treinamento físico. As estatísticas naïve bayesianas sustentam essa divisão de treinamento esportivo.…”
Section: Resultsunclassified
“…Grandes conjuntos de dados implicam em uma falha fora da memória. De acordo com Filiz, 23 eles ofereciam métodos líderes mundiais para educação em saúde mental, identidade setorial e treinamento físico. As estatísticas naïve bayesianas sustentam essa divisão de treinamento esportivo.…”
Section: Resultsunclassified
“…Large datasets imply an out-of-memory fault. According to Filiz, 23 they offered world-leading methods for mental health education, sector identity, and physical training. Naïve Bayesian statistics underpin this sports training divide.…”
Section: Student T-testmentioning
confidence: 99%
“…Common sources of inconsistencies between actual and predicted values in machine learning models include noise, variability, and bias [ 23 ]. Bagging, boosting, stacking, and voting, are among the notable approaches in this domain, offering improved predictive performance by combining the outputs of multiple base learners [ 24 , 25 ]. One of the most frequently used ensembled algorithms is voting [ 22 ].…”
Section: Introductionmentioning
confidence: 99%