Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
To alleviate the power flow congestion in active distribution networks (ADNs), this paper proposes a two-stage load transfer optimization model based on Neo4j-Dueling DQN. First, the Neo4j graph model was established as the training environment for Dueling DQN. Meanwhile, the power supply paths from the congestion point to the power source point were obtained using the Cypher language built into Neo4j, forming a load transfer space that served as the action space. Secondly, based on various constraints in the load transfer process, a reward and penalty function was formulated to establish the Dueling DQN training model. Finally, according to the ε−greedy action selection strategy, actions were selected from the action space and interacted with the Neo4j environment, resulting in the optimal load transfer operation sequence. In this paper, Python was used as the programming language, TensorFlow open-source software library was used to form a deep reinforcement network, and Py2neo toolkit was used to complete the linkage between the python platform and Neo4j. We conducted experiments on a real 79-node system, using three power flow congestion scenarios for validation. Under the three power flow congestion scenarios, the time required to obtain the results was 2.87 s, 4.37 s and 3.45 s, respectively. For scenario 1 before and after load transfer, the line loss, voltage deviation and line load rate were reduced by about 56.0%, 76.0% and 55.7%, respectively. For scenario 2 before and after load transfer, the line loss, voltage deviation and line load rate were reduced by 41.7%, 72.9% and 56.7%, respectively. For scenario 3 before and after load transfer, the line loss, voltage deviation and line load rate were reduced by 13.6%, 47.1% and 37.7%, respectively. The experimental results show that the trained model can quickly and accurately derive the optimal load transfer operation sequence under different power flow congestion conditions, thereby validating the effectiveness of the proposed model.
To alleviate the power flow congestion in active distribution networks (ADNs), this paper proposes a two-stage load transfer optimization model based on Neo4j-Dueling DQN. First, the Neo4j graph model was established as the training environment for Dueling DQN. Meanwhile, the power supply paths from the congestion point to the power source point were obtained using the Cypher language built into Neo4j, forming a load transfer space that served as the action space. Secondly, based on various constraints in the load transfer process, a reward and penalty function was formulated to establish the Dueling DQN training model. Finally, according to the ε−greedy action selection strategy, actions were selected from the action space and interacted with the Neo4j environment, resulting in the optimal load transfer operation sequence. In this paper, Python was used as the programming language, TensorFlow open-source software library was used to form a deep reinforcement network, and Py2neo toolkit was used to complete the linkage between the python platform and Neo4j. We conducted experiments on a real 79-node system, using three power flow congestion scenarios for validation. Under the three power flow congestion scenarios, the time required to obtain the results was 2.87 s, 4.37 s and 3.45 s, respectively. For scenario 1 before and after load transfer, the line loss, voltage deviation and line load rate were reduced by about 56.0%, 76.0% and 55.7%, respectively. For scenario 2 before and after load transfer, the line loss, voltage deviation and line load rate were reduced by 41.7%, 72.9% and 56.7%, respectively. For scenario 3 before and after load transfer, the line loss, voltage deviation and line load rate were reduced by 13.6%, 47.1% and 37.7%, respectively. The experimental results show that the trained model can quickly and accurately derive the optimal load transfer operation sequence under different power flow congestion conditions, thereby validating the effectiveness of the proposed model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.