High-throughput plant phenotyping (HTPP) is a fast, accurate, and non-destructive process for evaluating plants' health and environmental adaptability. HTPP accelerates the identification of agronomic traits of interest, eliminates subjectivism (which is innate to humans), and facilitates the development of adapted genotypes. Current HTPP methods often rely on imaging sensors and computer vision both in the field and under controlled (indoor) conditions. However, their use is limited by the costs and complexity of the necessary instrumentation, data analysis tools, and software. This issue could be overcome by developing more cost-efficient and user-friendly methods that let breeders, farmers, and stakeholders access the benefits of HTPP. To assist such efforts, this thesis presents an ensemble of dedicated affordable phenotyping methods using RGB imaging for a range of key applications under controlled conditions. The affordable Phenocave imaging system for use in controlled conditions was developed to facilitate studies on the effects of abiotic stresses by gathering data on important plant characteristics related to growth, yield, and adaptation to growing conditions and cultivation systems. Phenocave supports imaging sensors including visible (RGB), spectroscopic (multispectral and hyperspectral), and thermal imaging. Additionally, a pipeline for RGB image analysis was implemented as a plugin for the free and easy-to-use software ImageJ. This plugin has since proven to be an accurate alternative to conventional measurements that produces highly reproducible results. A subsequent study was conducted to evaluate the effects of heat and drought stress on plant growth and grain nutrient composition in wheat, an important staple cereal in Sweden. The effects of stress on plant growth were evaluated using image analysis, while stress-induced changes in the abundance of key plant compounds were evaluated by analyzing the nutrient composition of grains via chromatography. This led to the discovery of genotypes whose harvest quality remains stable under heat and drought stress. The next objective was to evaluate biotic stress; for this case, the effect of the fungal disease Fusarium head blight (FHB) that affects grain development in wheat was investigated. For this purpose, seed phenotyping parameters were used to determine the components and settings of a statistical model, which predicts the occurrence of FHB. The results reveal that grain morphology evaluations, such as length and width, were found to be significantly affected by the disease. Another study was carried out to estimate the disease severity of the common scab (CS) in potatoes, a widely popular food source. CS occurs on the tubers and reduces their visual appeal, significantly affecting their market value. Tubers were analyzed by a deep learning-based method to estimate disease lesion areas caused by CS. Results showed a high correlation between the predictions and expert visual scorings of the disease and proved to be a potential tool for the selection of genotypes that fulfill the market standards and resistance to CS. Both case studies highlight the role of imaging in plant health monitoring and its integration into the larger picture of plant health management. The methods presented in this work are a starting point for bridging the gap between costs and accessibility to imaging technology. These are affordable and user-friendly resources for generating pivotal knowledge on plant development and genotype selection. In the future, image acquisition of all the methods can be integrated into the Phenocave system, potentially allowing for a more automated and efficient plant health monitoring process, leading to the identification of tolerant genotypes to biotic and abiotic stresses.