This paper describes,
in detail, the development of a novel, low-cost,
and flexible drift tube (DT) along with an associated ion mobility
spectrometer system. The DT is constructed from a flexible printed
circuit board (PCB), with a bespoke “dog-leg” track
design, that can be rolled up for ease of assembly. This approach
incorporates a shielding layer, as part of the flexible PCB design,
and represents the minimum dimensional footprint conceivable for a
DT. The low thermal mass of the polyimide substrate and overlapping
electrodes, as afforded by the dog-leg design, allow for efficient
heat management and high field linearity within the tube–achieved
from a single PCB. This is further enhanced by a novel double-glazing
configuration which provides a simple and effective means for gas
management, minimizing thermal variation within the assembly. Herein,
we provide a full experimental characterization of the flexible DT
ion mobility spectrometer (Flex-DT-IMS) with corresponding electrodynamic
(Simion 8.1) and fluid dynamic (SolidWorks) simulations. The Flex-DT-IMS
is shown to have a resolution >80 and a detection limit of low
nanograms
for the analysis of common explosives (RDX, PETN, HMX, and TNT).