The three-dimensional NOGA(®) (Biologics Delivery Systems, a Johnson & Johnson company, Irwindale, CA, USA) electromechanical mapping system simultaneously registers the electrical and mechanical activities of the left ventricle, enabling online assessment of myocardial viability. The system distinguishes between viable, nonviable, stunned, and hibernating myocardium and can assess wall motion. The evaluation of the electrophysiological state of the tissue by NOGA(®) mapping has been validated by comparing the electroanatomical voltage and local linear shortening maps obtained with this technique with several noninvasive diagnostic tests. Bipolar signal analysis and determination of the existence and degree of transmural infarctions are also possible with NOGA(®). Immediately after percutaneous coronary intervention, an increased electromechanical discordance between voltage and local linear shortening maps indicates procedure-induced stunning that is caused by repetitive ischemia or microvascular compromise. Catheter-based direct intramyocardial injection of cells or gene constructs by NOGA(®) reduces the likelihood of systemic toxicity of the injected substance, resulting in minimal washout, limited exposure of nontarget organs, and precise localization to ischemic and peri-ischemic myocardial regions in patients with chronic myocardial ischemia. In addition, direct intramyocardial injection enables the treatment of chronic myocardial infarction by provoking a chemotactic signal at the injection-injury site that contributes to cell engraftment. By measuring the electrical activation pattern in delayed-motion areas, NOGA(®) might also be useful to predict response to cardiac resynchronization therapy.