Aiming at solving the control problem of a constrained and perturbed underwater robot, a control method was proposed by combining the self-triggered mechanism and the nonlinear model predictive control (NMPC). The theoretical properties of the kinematic model of the underwater robot, as well as the corresponding MPC controller, are first studied. Then, a novel technique for determining the next update moment of both the optimal control problem and the system state is developed. It is further rigorously proved that the proposed algorithm can (1) stabilize the closed-loop underwater robot system, (2) reduce the time of solving the optimal control problem and (3) save the information transfer resources. Finally, a case study is provided to show the effectiveness of the developed researched scheme.