Anthropogenic activities have increased the amount of urban wastewater discharged into natural aquatic reservoirs containing a high amount of nutrients such as phosphorus (Pi and PO 4 − 3 ), nitrogen (NH 3 and NO 3 − ) and organic contaminants. Most of the urban wastewater in Mexico do not receive any treatment to remove nutrients. Several studies have reported that an alternative to reduce those contaminants is using consortiums of microalgae and endogenous bacteria. In this research, a genome-scale biochemical reaction network is reconstructed for the co-culture between the microalga Chlorella vulgaris and the bacterium Pseudomonas aeruginosa. Metabolic Pathway Analysis (MPA), is applied to understand the metabolic capabilities of the co-culture and to elucidate the best conditions in removing nutrients. Theoretical yields for phosphorus removal under photoheterotrophic conditions are calculated, determining their values as 0.042 mmol of PO 4 − 3 per g DW of C. vulgaris, 19.43 mmol of phosphorus (Pi) per g DW of C. vulgaris and 4.90 mmol of phosphorus (Pi) per g DW of P. aeruginosa. Similarly, according to the genome-scale biochemical reaction network the theoretical yields for nitrogen removal are 10.3 mmol of NH 3 per g DW of P. aeruginosa and 7.19 mmol of NO 3 − per g DW of C. vulgaris. Thus, this research proves the metabolic capacity of these microorganisms in removing nutrients and their theoretical yields are calculated.