Backgrounds: Carbapenem resistance among Pseudomonas aeruginosa strains is alarming. This study aimed to investigate the relative frequency of carbapenem-resistant P. aeruginosa strains by phenotypic and genotypic methods.
Materials & Methods:The antibiotic susceptibility pattern of 60 P. aeruginosa isolates was determined by disk diffusion method (Kirby-Bauer). BD Phoenix automated microbiology system was used to identify carbapenem-resistant isolates, and the minimum inhibitory concentration (MIC) was determined using E-Test. In addition, mCIM (modified carbapenem inactivation method) phenotypic test was performed to evaluate carbapenem resistance genes in P. aeruginosa isolates. The prevalence of metallo-beta-lactamase (MβL) genes in carbapenem-resistant P. aeruginosa isolates was determined using conventional polymerase chain reaction (PCR). Findings: The frequency of carbapenem-resistant P. aeruginosa isolates was 36% (22 of 60). The highest resistance was observed to imipenem and meropenem (36.6%), and the highest sensitivity was observed to amikacin (75%). All carbapenem-resistant P. aeruginosa isolates were confirmed by the BD Phoenix automated system (MIC>8 µg/mL for imipenem and meropenem), E-test (MIC ˂32 µg/mL), and mCIM assay (the growth inhibition zone diameter was 6-8 mm). In carbapenem-resistant P. aeruginosa isolates, the frequency of bla VIM , bla IMP , and bla SPM genes was 9.1% (2 of 22), 4.5% (1 of 22), and 4.5% (1 of 22), respectively. Bla KPC and bla NDM genes were not found in any of the isolates.
Conclusion:Based on the present study results, all phenotypic tests used to identify carbapenemase-producing isolates had the same sensitivity (100%) and specificity (100%).