Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Introduction 3D-printed temporal bone models enable the training and rehearsal of complex otological procedures. To date, there has been no consolidation of the literature regarding the developmental process of 3D-printed temporal bone models. A brief review of the current literature shows that many of the key surgical landmarks of the temporal bone are poorly represented in models. This study aims to propose a novel design and production workflow to produce high-fidelity 3D-printed temporal bone models for surgical simulation. Methods Developmental phases for data extraction, 3D segmentation and Computer Aided Design (CAD), and fabrication are outlined. The design and fabrication considerations for key anatomical regions, such as the mastoid air cells and course of the facial nerve, are expounded on with the associated strategy and design methods employed. To validate the model, radiological measurements were compared and a senior otolaryngologist performed various surgical procedures on the model. Results Measurements between the original scans and scans of the model demonstrate sub-millimetre accuracy of the model. Assessment by the senior otologist found that the model was satisfactory in simulating multiple surgical procedures. Conclusion This study offers a systematic method for creating accurate 3D-printed temporal bone models for surgical training. Results show high accuracy and effectiveness in simulating surgical procedures, promising improved training and patient outcomes.
Introduction 3D-printed temporal bone models enable the training and rehearsal of complex otological procedures. To date, there has been no consolidation of the literature regarding the developmental process of 3D-printed temporal bone models. A brief review of the current literature shows that many of the key surgical landmarks of the temporal bone are poorly represented in models. This study aims to propose a novel design and production workflow to produce high-fidelity 3D-printed temporal bone models for surgical simulation. Methods Developmental phases for data extraction, 3D segmentation and Computer Aided Design (CAD), and fabrication are outlined. The design and fabrication considerations for key anatomical regions, such as the mastoid air cells and course of the facial nerve, are expounded on with the associated strategy and design methods employed. To validate the model, radiological measurements were compared and a senior otolaryngologist performed various surgical procedures on the model. Results Measurements between the original scans and scans of the model demonstrate sub-millimetre accuracy of the model. Assessment by the senior otologist found that the model was satisfactory in simulating multiple surgical procedures. Conclusion This study offers a systematic method for creating accurate 3D-printed temporal bone models for surgical training. Results show high accuracy and effectiveness in simulating surgical procedures, promising improved training and patient outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.