Background:
Life-saving emergency major resection of colorectal cancer (CRC) is a high-risk procedure. Accurate prediction of post-operative mortality for patients undergoing this procedure is essential for both healthcare performance monitoring and pre-operative risk assessment. Risk-adjustment models for CRC patients often include patient and tumour characteristics, widely available in cancer registries and audits. We investigated to what extent inclusion of additional physiological and surgical measures, available through linkage or additional data collection, improves accuracy of risk models.
Methods:
Linked, routinely-collected data on patients undergoing emergency CRC surgery in England between December 2016 and November 2019 were used to develop a risk model for 90-day mortality. Backwards selection identified a ‘selected model’ of physiological and surgical measures in addition to patient and tumour characteristics. Model performance was assessed compared to a ‘basic model’ including only patient and tumour characteristics. Missing data was multiply imputed.
Results:
846 of 10,578 (8.0%) patients died within 90 days of surgery. The selected model included seven pre-operative physiological and surgical measures (pulse rate, systolic blood pressure, breathlessness, sodium, urea, albumin, and predicted peritoneal soiling), in addition to the ten patient and tumour characteristics in the basic model (calendar year of surgery, age, sex, ASA grade, TNM T stage, TNM N stage, TNM M stage, cancer site, number of comorbidities, emergency admission). The selected model had considerably better discrimination compared to the basic model (C-statistic: 0.824 versus 0.783, respectively).
Conclusion:
Linkage of disease-specific and treatment-specific datasets allowed the inclusion of physiological and surgical measures in a risk model alongside patient and tumour characteristics which improves the accuracy of the prediction of the mortality risk for CRC patients having emergency surgery. This improvement will allow more accurate performance monitoring of healthcare providers and enhance clinical care planning.