In veterinary practice, a thorough gait examination is essential in the clinical workup of any orthopedic patient, including the large population of dogs with chronic pain as a result of osteoarthritis. The traditional visual gait examination is, however, a subjective discipline, and systems for kinetic gait analysis may potentially offer an objective alternative for gait assessment by the measurement of ground reaction forces. In order to avoid unnecessary testing of patients, a thorough, stepwise evaluation of the diagnostic performance of each system is recommended before clinical use for diagnostic purposes. The aim of the study was to evaluate the Tekscan pressure-sensitive walkway system by assessing precision (agreement between repetitive measurements in individual dogs) and overlap performance (the ability to distinguish dogs with lameness due to osteoarthritis from clinically healthy dogs). Direction of travel over the walkway was investigated as a possible bias. Symmetry indices are commonly used to assess lameness by comparing ground reaction forces across different combinations of limbs in each dog. However, SIs can be calculated in several different ways and specific recommendations for optimal use of individual indices are currently lacking. Therefore the present study also compared indices in order to recommend a specific index preferable for future studies of canine osteoarthritis. Forty-one clinically healthy dogs and 21 dogs with osteoarthritis were included in the study. High precision was demonstrated. The direction of travel over the walkway was excluded as a possible bias. A significant overlap was observed when comparing ground reaction forces measured in dogs with osteoarthritis compared to clinically healthy dogs. In some affected dogs, symmetry indices comparing contralateral limbs differed from clinically healthy dogs, but in general, the overlap performance was insufficient and, consequently, general use of this method for diagnostic purposes in dogs with osteoarthritis cannot be recommended.