La notion d'appartenance partielle d'une station hydrométrique à une région hydrologique est modélisée par une fonction d'appartenance obtenue en appliquant les concepts de l'analyse floue. Les stations hydrométriques sont représentées dans des plans dont les axes sont des attributs hydrologiques et/ou physiographiques. Les régions hydrologiques sont considérées comme des sous-ensembles flous. Une méthode d'agrégation par cohérence (Iphigénie) permet d'établir des classes d'équivalence pour la relation floue "il n'y a pas d'incohérence entre les éléments d'une même classe": ce sont des classes d'équivalence qui représentent les régions floues. La fonction d'appartenance dans ce cas est stricte. Par opposition, la seconde méthode de type centres mobiles flous (ISODATA) permet d'attribuer un degré d'appartenance d'une station à une région floue dans l'intervalle [0,1]. Celle-ci reflète le degré d'appartenance de la station à un groupe donné (le nombre de groupes étant préalablement choisi de façon heuristique). Pour le cas traité (réseau hydrométrique tunisien, débits maximums annuels de crue), il s'avère cependant que le caractère flou des stations n'est pas très prononcé. Sur la base des agrégats obtenus par la méthode Iphigénie et des régions floues obtenues par ISODATA, est effectuée une estimation régionale des débits maximums de crue de période de retour 100 ans. Celle-ci est ensuite comparée à l'estimation régionale obtenue par la méthode de la région d'influence ainsi qu'à l'estimation utilisant les seules données du site, sous l'hypothèse que les populations parentes sont des lois Gamma à deux paramètres et Pareto à trois paramètres.The concept of partial membership of a hydrometric station in a hydrologic region is modeled using fuzzy sets theory. Hydrometric stations are represented in spaces of hydrologic (coefficient of variation: CV, coefficient of skewness: CS, and their counterparts based on L- moments: L-CV and L-CS) and/or physiographic attributes (surface of watershed: S, specific flow: Qs=Qmoyen/S, and a shape index: Ic). Two fuzzy clustering methods are considered.First a clustering method by coherence (Iphigénie) is considered. It is based on the principle of transitivity: if two pairs of stations (A,B) and (B,C) are known to be "close" to one another, then it is incoherent to state that A is "far" from C. Using a Euclidean distance, all pairs of stations are sorted from the closest pairs to the farthest. Then, the pairs of stations starting and ending this list are removed and classified respectively as "close" and "far". The process is then continued until an incoherence is detected. Clusters of stations are then determined from the graph of "close" stations. A disadvantage of Iphigénie is that crisp (non fuzzy) membership functions are obtained.A second method of clustering is considered (ISODATA), which consists of minimizing fuzziness of clusters as measured by an objective function, and which can assign any degree of membership between 0 to 1 to a station to reflect its partial membershi...