As more and more oil recovery scenarios use seawater, the need to identify the possible mechanisms of wettability state changes in oil reservoirs has never been greater. By using molecular dynamics simulations, this study sheds light on the effect of ions common to seawater (Ca2+, K+, Mg2+, Na+, Cl-, HCO3-, SO42-) on the affinity between silica and carbonate as the traditional rock types and asphaltene molecules as an important contributing factor of reservoir oil wetness. In the case of carbonate and silica being the reservoir rock types, the measured parameters indicate good agreement with each other, meaning that (HCO3- & SO42-) and (Na+ & Cl-) ions reached maximum bonding energies of (25485, 25511, 4096, and -4093 eV, respectively). As with the surface charge density measurements, the results of the non-bonding energies between the individual atomic structures agree with those from the simulation cell. In the presence of a silica surface, the radial distribution function (RDF) results determine that the peak of the maximum value for the distribution of the ions is 4.2. However, these values range from 3 to 6.6, suggesting that different ions perform better under the influence of carbonate rock. As these ions are distributed in the simulation box along the adsorption domain, the conditions for sequestering asphaltene from the rock surface are made ideal for dissolution and removal. At equal ion strength, measuring the distance between the center of mass of rocks and asphaltene structures reveals a maximum repulsion force of 22.1 Å and a maximum detachment force of 10.4 Å in the presence of SO42- and Na+ ions on carbonate and silica surfaces.