Background
Museum biological specimens provide a unique means of gathering ecological information that spans wide temporal ranges. Museum specimens can also provide information on the microbial communities that persist within the host specimen. Together, these provide researchers valuable opportunities to study long-term trends and mechanisms of microbial community change. The effects of decades-long museum preservation on host-microbial communities have not been systematically assessed. The University of Colorado’s Museum of Natural History has densely sampled Oreohelix strigosa (Rocky Mountainsnail) for the past century; many are preserved in ethanol, which provides an excellent opportunity to explore how the microbiome changes across time in preservation.
Results
We used 16S rRNA (ribosomal ribonucleic acid) gene amplicon sequencing to examine Oreohelix strigosa gut microbiomes from museum specimens across a 98-year range, as well as within short-term preservation treatments collected in 2018. Treatment groups included samples extracted fresh, without preservation; samples starved prior to extraction; and samples preserved for 1 month, 6 months, and 9 months. General microbiome composition was similar across all years. Sample groups belonging to specific years, or specific short-term treatments, showed unique associations with select bacterial taxa. Collection year was not a significant predictor of microbial richness, though unpreserved short-term treatments showed significantly higher richness than preserved treatments. While the year was a significant factor in microbiome composition, it did not explain much of the variation across samples. The location was a significant driver of community composition and explained more of the variability.
Conclusions
This study is the first to examine animal host-associated microbiome change across a period of nearly one century. Generally, geographic location was a greater factor in shaping gut microbiome composition, rather than a year collected. Consistent patterns across this temporal range indicate that historic specimens can answer many ecological questions surrounding the host-associated microbiome.