Department of General and Physical Chemistry, University of Liege, Liege, Belgium A specific beam-induced secondary reaction involving the condensation of hydroxylic matrices with some organic groups (aldehydes, ketones, etc.) accompanied by the loss of a water molecule was investigated by liquid secondary ion mass spectrometry/fast-atom bombardment (LSIMS/FAB). A mechanistic scheme and a structure of the induced product are proposed. The features of this secondary reaction were studied and the influence of the types of solutes, acidic additives, and matrices analyzed. Rather than a drawback, LSIMS/FAB mass spectrometry can take advantage of this matrix effect to infer analytical information through tandem mass spectrometry experiments. Specific neutral loss scans can be conducted to highlight beam-induced reactive molecules, even when the detection of these species is prevented in normal scan spectra by other surface-active components.