Background: Barrier lakes, formed by river interception, are particularly influenced by the upstream river. As such, spring freshet flooding and summer rainfall flooding due to wet precipitation (e.g. snow and rainfall) may sharply increase the concentrations of nitrogen, phosphorous, and carbon compounds in barrier lakes. Too much nutrients will lead to lake eutrophication. In this study, we used Lake Jingpo, the world's second largest alpine barrier lake, to examine the impact of spring freshet flooding and summer rainfall flooding on its water quality by building a hydrodynamic water quality model with MIKE 21. Results: The MIKE 21 HD hydrodynamic model and MIKE 21 AD convection and diffusion module were calibrated using meteorological data, hydrological data, and water quality data collected in 2018. All errors were in the acceptable range. According to model simulation results, the flow velocity in Lake Jingpo is generally weak (mostly lower than 0.015 m/s), but it increases to 0.045 m/s and above during spring freshet flooding (April-May) and summer rainfall flooding (August-September), which is much higher than in other months. The flow volume of its largest inflowing river reaches 4.81 × 10 8 m 3 , 29.77 × 10 8 m 3 , and 58.4 × 10 8 m 3 during spring freshet flooding, summer rainfall flooding, and 30-year frequency rainfall flooding period, respectively. The longest diffusion distances from the lake mouth to the downstream way are 16.3 km, 33.1 km, and 43.6 km during the spring freshet flooding, summer rainfall flooding, and 30-year frequency rainfall flooding period, respectively. A larger amount of precipitation leads to longer diffusion distances and increased concentrations of total nitrogen (TN), total phosphorous (TP), chemical oxygen demand (COD Mn), and ammonia-nitrogen (NH 4-N) in the lake. Conclusions: The sudden increase in water volume during spring flooding and summer rainfall flooding led to the rapid spread of nutrients and pollutants carried by the water into the barrier lake, resulting in a deterioration of lake water quality. In addition to pollution source control measures, ecological restoration, and the construction of a buffer system in the catchment are very important measures to effectively improve the buffer capacity of barrier lakes in light of spring freshet flooding and summer rainfall flooding.