2010
DOI: 10.1007/s12594-010-0042-8
|View full text |Cite
|
Sign up to set email alerts
|

Evaluation of seismic events detection algorithms

Abstract: Identification of seismic events from continuously recorded seismic data in real-time through a Digital Seismic Data Recording system is a difficult task. Despite the vast amount of research in this field, the signal processing and event parameters discrimination algorithms have not yet fully come of age. Presently, we have a wide spectrum of trigger algorithms, ranging from a very simple amplitude threshold type to the sophisticated ones based on pattern recognition approaches. Some of the other approaches us… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
25
0
4

Year Published

2013
2013
2023
2023

Publication Types

Select...
6
3
1

Relationship

0
10

Authors

Journals

citations
Cited by 78 publications
(29 citation statements)
references
References 18 publications
0
25
0
4
Order By: Relevance
“…Recently, an iterative semi-automatic picking procedure based on stacked pilot traces and cross-correlation has been introduced to reduce errors in phase picking (Rowe, et al [28], de Meersman et al [18]). However, Sharma, et al [29] emphasize that no time-picking algorithm is optimal under all conditions, especially under noisy conditions, and thus understanding the parameters and limitations is necessary (Akram and Eaton [30]).…”
Section: Arrival Time Pickingmentioning
confidence: 99%
“…Recently, an iterative semi-automatic picking procedure based on stacked pilot traces and cross-correlation has been introduced to reduce errors in phase picking (Rowe, et al [28], de Meersman et al [18]). However, Sharma, et al [29] emphasize that no time-picking algorithm is optimal under all conditions, especially under noisy conditions, and thus understanding the parameters and limitations is necessary (Akram and Eaton [30]).…”
Section: Arrival Time Pickingmentioning
confidence: 99%
“…The accuracy of the analysis data depends on the STA and LTA window sizes and threshold value. The STA and LTA are represented as follows [11][12][13].…”
Section: Seismic Data Analysis and Sta/ Lta Algorithmmentioning
confidence: 99%
“…Posteriormente la transformada discreta de Fourier (DFT -FFT) [17] es usada para pasar la señal al dominio de la frecuencia y poder eliminar el ruido que afecta a los picos de la señal (alta frecuencia) mediante un filtro pasa-bajos. Se usa Short Term Averaging / Long Term Averaging (STA/LTA) [18] en la detección de picos por su ligereza, mínima intensidad de cálculo (ahorro de batería) y su extenso uso en sismología; relaciona ventanas cortas con ventanas largas determinando si la señal sobrepasa un umbral dinámico que varía dependiendo del valor de la relación entre ventanas. El mantener un umbral dinámico ayuda a que movimientos periódicos del usuario como correr, trotar, caminar, etc., que presentarán un umbral superior al normal, sean descartados como un pico sísmico.…”
Section: Arquitecturaunclassified