Previous research showed that steel moment-resisting frames (MRFs) with viscous dampers may experience column plastic hinges under strong earthquakes and highlighted the need to further assess the efficiency of capacity design rules. To partially address this need, three alternatives of a prototype building having five, 10 and 20 stories are designed according to Eurocode 8 using either steel MRFs or steel MRFs with dampers. Incremental dynamic analysis (IDA) is conducted for all MRFs and their collapse resistance and plastic mechanism is evaluated. The results show that steel MRFs with dampers are prone to column plastic hinging in comparison to steel MRFs. The steel MRFs with dampers are then iteratively re-designed with stricter capacity design rules to achieve a plastic mechanism that is approximately similar to that of steel MRFs. The performance of these re-designed steel MRFs with dampers indicates, that overall, enforcement of stricter capacity design rules for columns is not justified neither from a collapse resistance or a reparability perspective.