Coincidence resolving time (CRT) is one of the most important physical-performance measures for positron emission tomography (PET), as reconstruction with accurate time-of-flight information enhances the lesion detectability in patient studies. Accordingly, various PET detector designs and high-performance front-end readout circuits have been actively investigated to improve timing performance. The resulting PET detectors are often evaluated using multichannel waveform digitizers for versatile data analysis of the output signals. However, we have found that inappropriate data acquisition (DAQ) using a multichannel waveform digitizer based on the domino-ring-sampler 4 (DRS4) chip can lead to a considerable error when determining CRT. To address this issue, we performed CRT measurements using a pair of Hamamatsu R9800 photomultiplier tube based PET detectors. Then, considering intra- and inter-chip sampling, we employed four different combinations of input channels into the CAEN DT5742B waveform digitizer and obtained 2D CRT maps according to the leading-edge discriminator threshold for assessing each DAQ scheme. The intra-chip CRT measurement exhibited unusual streak patterns in the 2D CRT map and yielded the artificially-low CRT information in PET detector pairs, whereas the inter-chip CRT measurement provided the reliable estimation of timing resolution. Further, we could prevent the high-frequency signal crosstalk among input channels within the DRS4 chip using the inter-chip CRT measurement. We expect that our findings will also be useful for achieving the reliable CRT measurements when using other single-chip-based multichannel waveform digitizers.