Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
PurposeThe study aims to enhance the detection and classification of conjunctival eye diseases' severity through the development of ConjunctiveNet, an innovative deep learning framework. This model incorporates advanced preprocessing techniques and utilizes a modified Otsu’s method for improved image segmentation, aiming to improve diagnostic accuracy and efficiency in healthcare settings.Design/methodology/approachConjunctiveNet employs a convolutional neural network (CNN) enhanced through transfer learning. The methodology integrates rescaling, normalization, Gaussian blur filtering and contrast-limited adaptive histogram equalization (CLAHE) for preprocessing. The segmentation employs a novel modified Otsu’s method. The framework’s effectiveness is compared against five pretrained CNN architectures including AlexNet, ResNet-50, ResNet-152, VGG-19 and DenseNet-201.FindingsThe study finds that ConjunctiveNet significantly outperforms existing models in accuracy for detecting various severity stages of conjunctival eye conditions. The model demonstrated superior performance in classifying four distinct severity stages – initial, moderate, high, severe and a healthy stage – offering a reliable tool for enhancing screening and diagnosis processes in ophthalmology.Originality/valueConjunctiveNet represents a significant advancement in the automated diagnosis of eye diseases, particularly conjunctivitis. Its originality lies in the integration of modified Otsu’s method for segmentation and its comprehensive preprocessing approach, which collectively enhance its diagnostic capabilities. This framework offers substantial value to the field by improving the accuracy and efficiency of conjunctival disease severity classification, thus aiding in better healthcare delivery.
PurposeThe study aims to enhance the detection and classification of conjunctival eye diseases' severity through the development of ConjunctiveNet, an innovative deep learning framework. This model incorporates advanced preprocessing techniques and utilizes a modified Otsu’s method for improved image segmentation, aiming to improve diagnostic accuracy and efficiency in healthcare settings.Design/methodology/approachConjunctiveNet employs a convolutional neural network (CNN) enhanced through transfer learning. The methodology integrates rescaling, normalization, Gaussian blur filtering and contrast-limited adaptive histogram equalization (CLAHE) for preprocessing. The segmentation employs a novel modified Otsu’s method. The framework’s effectiveness is compared against five pretrained CNN architectures including AlexNet, ResNet-50, ResNet-152, VGG-19 and DenseNet-201.FindingsThe study finds that ConjunctiveNet significantly outperforms existing models in accuracy for detecting various severity stages of conjunctival eye conditions. The model demonstrated superior performance in classifying four distinct severity stages – initial, moderate, high, severe and a healthy stage – offering a reliable tool for enhancing screening and diagnosis processes in ophthalmology.Originality/valueConjunctiveNet represents a significant advancement in the automated diagnosis of eye diseases, particularly conjunctivitis. Its originality lies in the integration of modified Otsu’s method for segmentation and its comprehensive preprocessing approach, which collectively enhance its diagnostic capabilities. This framework offers substantial value to the field by improving the accuracy and efficiency of conjunctival disease severity classification, thus aiding in better healthcare delivery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.