Assessing the effectiveness of vegetation restoration along the Yangtze River shoreline and exploring its relationship with land use changes are imperative for providing recommendations for sustainable management and environmental protection. However, the impact of vegetation restoration post-implementation of the Yangtze River Conservation Project remains uncertain. In this study, utilizing Sentinel-2 satellite imagery and Dynamic World land use data from pre- (2016) and post- (2022) Yangtze River Conservation Project periods, pixel-based binary models, transition matrices, and geographically weighted regression models were employed to analyze the status and evolution of vegetation coverage along the Yangtze River shoreline. The results indicated that there had been an increase in the area covered by high and high-medium vegetation levels. The proportion of vegetation cover shifting to better was 4201.87 km2 (35.68%). Hotspots of vegetation coverage improvement were predominantly located along the Yangtze River. Moreover, areas witnessing enhanced vegetation coverage experienced notable land use changes, notably the conversion of water to crops (126.93 km2, 22.79%), trees to crops (59.93 km2, 10.76%), and crops to built area (59.93 km2, 10.76%). Notably, the conversion between crops and built area emerged as a significant factor influencing vegetation coverage improvement, with average regression coefficients of 0.68 and 0.50, respectively. These outcomes underscore the significance of this study in guiding ecological environmental protection and sustainable management along the Yangtze River shoreline.