As the proportion of adult orthodontic treatment increases, mainly for aesthetic reasons, orthodontic brackets are directly attached to yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) restorations. This, study analyzed the shear bond strength (SBS) between various surface treated Y-TZP and orthodontic metal brackets. The Y-TZP specimens were conditioned by 110 μm Al2O3 sandblasting, or sandblasting followed by coating with one of the primers (silane, MDP, or an MDP-containing silane primer). After surface treatment, the orthodontic metal bracket was bonded to the specimen using a resin cement, and then 24 h storage in water and thermal cycling (5000 cycles, 5–55 °C), SBS was measured. Surface roughness was analyzed for surface morphology, and X-ray photoelectron spectroscopy (XPS) was employed for characterization of the chemical bond between the Y-TZP and the MDP-based primers (MDP, MDP containing silane primer). It was found that after surface treatment, the surface roughness of all groups increased. The groups treated with 110 μm Al2O3 sandblasting and MDP, or MDP-containing silane primer showed the highest SBS values, at 11.92 ± 1.51 MPa and 13.36 ± 2.31 MPa, respectively. The SBS values significantly decreased in all the groups after thermal cycling. Results from XPS analysis demonstrated the presence of chemical bonds between Y-TZP and MDP. Thus, the application of MDP-based primers after Al2O3 sandblasting enhances the resin bond strength between Y-TZP and the orthodontic metal bracket. However, bonding durability of all the surface-treated groups decreased after thermal cycling.