Soil hydraulic properties are mainly governed by the soil’s heterogeneity, anisotropy, and discontinuous structural characteristics, primarily when connected soil macropores characterize the structures. Therefore, researchers must document reliable hydrological models to elucidate how the soil medium affects the movement of soil water. This study, utilizing a field-scale staining tracer test, distinguishes between matrix flow and preferential flow areas in the seepage field of Xi’an loess. The Xi’an loess’s soil water characteristic curve (SWCC) was explored through field investigations and laboratory analyses. A dual-permeability model that couples matrix and macropore flow was developed using the Hydrus-2D model, enabling simulations of water migration under varying initial soil water content, rainfall intensity, and crack width. The results showed that (1) The SWCC of macropores in the preferential flow area exhibits a bimodal distribution, and the Fredlund & Xing model is applied for sectional fitting to obtain the corresponding soil water characteristic parameters. (2) Initial soil water content and rainfall intensity significantly influence water distribution, while crack width has a relatively minor effect. (3) The cumulative flux under the preferential flow is significantly higher than in the matrix area, and the wetting front depth increases with higher initial water content and rainfall intensity. This study reveals the key characteristics of preferential flow and moisture migration in the matrix zone and their influencing factors in loess. It constructs a two-domain infiltration model by integrating loess’s diverse structural characteristics and pore morphology. This model provides a theoretical basis and technical support for simulating preferential flow and studying the moisture dynamics of loess profiles.