The use of man-made nanoparticles (NPs) has increased exponentially in recent years, many of which accumulate in significant quantities in soil, including through use in agriculture as nanofertilizers and nanopesticides. ZnO NPs are more environmentally friendly but have specific antimicrobial activity, which can affect soil microbiota, thereby influencing key microbial processes such as mineralization, nitrogen fixation and plant growth-promoting activities. Their behavior and persistence in soil depend on their chemical nature and soil characteristics. This review summarizes the applications of ZnO NPs in soil systems and their effects on various plants and soil microorganisms, particularly rhizobacteria that promote plant growth. A stimulating effect of ZnO NPs on the morphometric and biochemical characteristics of plants, as well as on soil microbiota and its activity at relatively low concentrations of up to 500 mg/mL and 250 mg/kg, respectively, is observed. As the concentration of ZnO NPs increases above these limits, toxic effects appear. The different effects of ZnO NPs are related to their size, dose, duration of exposure, solubility in water, as well as soil type, acidity and organic matter content. The review substantiates the need to study the behavior of ZnO NPs in the “soil-plant-microbiota” system for the possibility of using nanotechnologies in the agricultural industry and ensuring the safety of agricultural products.