As a widespread practice in urban landscape design, tree planting plays a vital role in improving the ecological environment and microclimate. This study obtained the physical, physiological, and meteorological data of Ficus altissima, a typical tree species in lower subtropical China, through field measurement, and analyzed its functional performance in microclimate regulation. Its results indicated that: (1) the leaf area index (LAI), sky visible factor (SVF), ground cover (GC), and other indicators of Ficus altissima had essential relationships with radiation attenuation, temperature, and humidity regulation under winter conditions in lower subtropical China; (2) there were significant differences in leaf surface temperature and transpiration between east, west, north, and south during daytime; and, (3) thermal comfort represented by physiological equivalent temperature(PET)in the shade could be expressed as functions of solar radiation (SR), mean radiation temperature (MRT), air temperature (Ta), air humidity (RH), globe temperature (Tg), and wind speed (V). Based on these results, the following were the suggestions: firstly, Ficus altissima with higher LAI values should be selected for planting; secondly, trees must be planted on the east side of the site should solitary planting be undertaken to obtain maximum thermal comfort; and finally, activities under the canopy of Ficus altissima should be prioritized at 11:00–16:00 during winter.