Periodontal disease is characterized by the destruction of tooth supporting structures, and continuous destruction of these structures may lead to alveolar bone defects and tooth loss. Periodontal therapy aims to arrest the disease progression as well as to regenerate the loss of structures. Since, the regeneration of these structures is a complex process, cell-based tissue engineering has become one of the methods for periodontal tissue regeneration. In order to give mechanical support to the cells, an amniotic membrane has been proposed as one type of periodontal scaffold, due to its predictable properties. In this review, the integral structure, properties and the recent research in application of amniotic membranes, basically in medical and dental surgeries, along with its potential as a scaffold in periodontal regeneration are highlighted. Amniotic membranes have shown great potential as a suitable substrate/scaffold in in vitro and animal studies; thus provide an alternative for scaffolds materials nowadays. Nevertheless, further studies are required to establish its role and efficacy in periodontal tissue engineering.