Fossil fuels increase the emission values of greenhouse gases such as CO2 in the atmosphere and cause global warming and climate change. At the same time, fossil fuel reserves are facing depletion in the near future, and energy supply also has an important dimension such as national security and foreign dependency. All these show that turning to renewable energy sources and developing solutions and policies for energy saving has become a necessity both globally and locally. For such reasons, modeling of urban structures, which have a great contribution to energy consumption, and simulating the energy demand on an urban scale are of great importance for the effective use of energy. Research on this has shown that UBEM (Urban Building Energy Modeling) is an effective solution to these problems. However, UBEM contains different technical problems for implementation. Due to its versatility, various concepts related to this field lead to complexity. With this increasing complexity, there is a growing need to compile concepts from a holistic perspective. In this study, it is aimed to create a solution to these challenges. For this purpose, a comprehensive and up-to-date research of various modeling approaches and model creation process used in urban building energy modeling has been conducted. Studies on these approaches are summarized and a systematic review of the literature is made. At the same time, the study is in the nature of guiding and forming the general knowledge level with the basic concepts that should be known to those who will work on UBEM.