The aim of this study is to evaluate from a hydrological perspective and in the context of climate change the future of subsurface drainage of the La Jaillière site (western France), which is representative of the pedology of the majority of French subsurface drainage. We used a uniquely large and comprehensive range of 17 hydrological indicators (HIs), describing the temporal dynamics of drainage season, soil saturation, drained water balance and flood events. The HI values are calculated from simulated discharges provided by a subsurface drainage model, the SIDRA-RU model, fed by 12 climate projections from 1975 to 2100 (CMIP5 Euro-Cordex project), with three climate change scenarios: Representative Concentration Pathways (RCP) 2.6, RCP4.5 and RCP8.5. We first verified that the HIs simulated using climate projections in the SIDRA-RU model over the historical period were not critically biased compared to the HIs obtained from the reference climatic reanalysis (SAFRAN). Second, we analysed and compared the HI evolution over different periods and under different scenarios. Our results showed that the number of significant changes in HI values increased under climate change by 2100, depending on the RCP: 2 HIs out of the 17 changed under RCP2.6; 6 HIs under RCP4.5; 10 HIs under RCP8.5. The intensity of drainage peak flows linked to flood events and the annual maximal discharge changed significantly under all RCPs. The temporality of the drainage season was substantially affected according to how pessimistic the RCP was. The worst changes were observed under RCP8.5, which exacerbated extreme events: The wet period was shorter while the dry period was longer by about 67%; the drought index increased by 100%; the summer drained water balance decreased by 9%. On the contrary, in winter, the duration of the wet period decreased while maintaining the same drained water balance, thus inducing stronger flood events leading to an earlier saturation of the drainage networks. The sustainability of the drainage system design at La Jaillière is therefore threatened, with the risk of fulfilling its function less effectively by 2100, exposing current crops to more important runoff and affecting water quality by increasing the leaching of agrochemical inputs.