In this work, the morphology, anti-corrosion performance and degradation mechanisms of two phosphate chemical conversion coatings containing the AEO (fatty alcohol polyoxyethylene ether) and AES (fatty alcohol polyoxyethylene ether sodium sulfate) on an as-cast Mg-8wt.%Li alloy were explored and compared. Although two coating layers had a petal-shaped structure and were composed of leaf-shaped particles, the coating layer of the AES-coated sample was relatively dense due to the smaller size of the formed petal-shaped structure. Based on the electrochemical data and hydrogen evolution measurements, the corrosion protectability of the coating layer on the AES-coated sample was better than that on the AEO-coated sample. The determined corrosion current densities (icorr) of the AES-coated and AEO-coated samples in the 3.5 wt.% NaCl solution were, respectively, 7.8 mA·cm−2 and 11.7 mA·cm−2, whereas the icorr value of the coated sample without a surfactant was 36.2 mA·cm−2.