There is no well-defined threshold for intra-operative blood transfusion (BT) in advanced epithelial ovarian cancer (EOC) surgery. To address this, we devised a Machine Learning (ML)-driven prediction algorithm aimed at prompting and elucidating a communication alert for BT based on anticipated peri-operative events independent of existing BT policies. We analyzed data from 403 EOC patients who underwent cytoreductive surgery between 2014 and 2019. The estimated blood volume (EBV), calculated using the formula EBV = weight × 80, served for setting a 10% EBV threshold for individual intervention. Based on known estimated blood loss (EBL), we identified two distinct groups. The Receiver operating characteristic (ROC) curves revealed satisfactory results for predicting events above the established threshold (AUC 0.823, 95% CI 0.76-0.88). Operative time (OT) was the most significant factor influencing predictions. Intra-operative blood loss exceeding 10% EBV was associated with OT > 250 minutes, primary surgery, serous histology, performance status 0, R2 resection and surgical complexity score > 4. Certain sub-procedures including large bowel resection, stoma formation, ileocecal resection/right hemicolectomy, mesenteric resection, bladder and upper abdominal peritonectomy demonstrated clear associations with an elevated interventional risk. Our findings emphasize the importance of obtaining a rough estimate of OT in advance for precise prediction of blood requirements.