2023
DOI: 10.1038/s41598-023-27481-y
|View full text |Cite
|
Sign up to set email alerts
|

Evaluation of the portability of computable phenotypes with natural language processing in the eMERGE network

Abstract: The electronic Medical Records and Genomics (eMERGE) Network assessed the feasibility of deploying portable phenotype rule-based algorithms with natural language processing (NLP) components added to improve performance of existing algorithms using electronic health records (EHRs). Based on scientific merit and predicted difficulty, eMERGE selected six existing phenotypes to enhance with NLP. We assessed performance, portability, and ease of use. We summarized lessons learned by: (1) challenges; (2) best practi… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
3
0
1

Year Published

2023
2023
2024
2024

Publication Types

Select...
3
3

Relationship

1
5

Authors

Journals

citations
Cited by 7 publications
(4 citation statements)
references
References 49 publications
0
3
0
1
Order By: Relevance
“…The research methodology adopted in this study builds upon the integration of text mining and deep learning techniques for the automated discovery of biomedical materials in healthcare applications. The methodology encompasses two key components: (1) The exploration of research questions related to the domain, as exemplified by the graphical representation using bar charts, line charts, and scatter plots; and (2) The evaluation of the performance of different models through the visualization of precision, recall, and F1-score (Pacheco, J. A., et al, 2023).…”
Section: Methodsmentioning
confidence: 99%
“…The research methodology adopted in this study builds upon the integration of text mining and deep learning techniques for the automated discovery of biomedical materials in healthcare applications. The methodology encompasses two key components: (1) The exploration of research questions related to the domain, as exemplified by the graphical representation using bar charts, line charts, and scatter plots; and (2) The evaluation of the performance of different models through the visualization of precision, recall, and F1-score (Pacheco, J. A., et al, 2023).…”
Section: Methodsmentioning
confidence: 99%
“…Detailed guidelines for expert evaluation can be found in Supplemental Table 2. Experts assigned categorical scores ("Good [3]," "Medium [2]," or "Poor [1]") for each axis based on predefined criteria, providing justifications accordingly. Interrater reliability was assessed using the weighted Cohen's Kappa score 28 .…”
Section: Evaluating the Quality Of Llm-generated Phenotyping Algorithmsmentioning
confidence: 99%
“…Electronic health record (EHR) phenotyping, which involves creating algorithms to identify and correctly classify a patient's observable characteristics by integrating complex clinical data, has become pivotal in observational health research 1 . Developing EHR phenotypes is an intricate and labor-intensive process that demands extensive expertise in both the clinical and informatics domains 2,3 . While phenotyping includes the identification of individuals with specific characteristics, it also necessitates the selection of suitable controls for meaningful comparisons with the identified cases 4 .…”
Section: Introductionmentioning
confidence: 99%
“…легчения идентификации фенотипа применяются различные стандарты представления данных (часть из них описаны ниже): SNOMED-CT (Systemized Nomenclature of Medicine -Clinical Terms, систематизированная номенклатура в медицине -клинические термины), CPT (Current Procedural Terminology, современная терминология процедур), LOINC (Logical Observation Identifiers Names and Codes, имена и коды идентификаторов логических наблюдений), FHIR (Fast Health Interoperability Resources, ресурсы быстрого взаимодействия в сфере здравоохранения) и др., а также системы обработки естественного языка, например, "MedLEE", "MetaMap", "KnowledgeMap" и "cTAKES" [22][23][24]. Подобный подход позволяет успешно проводить анализ данных как в рамках одного клинического центра, так и в многоцентровых исследованиях, даже при наличии различий в клинической практике между разными учреждениями [20,24].…”
Section: ресурсы: данные эмк и эиб кодификаторыunclassified