Drilling cuttings from the rock formation generated during the drilling process are generally smashed to fine particles through hydraulic cutting and grinding using a drilling tool, and then are mixed with the drilling fluid during circulation. However, some of these particles are too small and light to be effectively removed from the drilling fluid via solids-control equipment. These small and light solids are referred to as low gravity solids (LGSs). This work aimed to investigate the effect of LGSs on the performance of oil-based drilling fluid (OBDF), such as the rheological properties, high-temperature and high-pressure filtration loss, emulsion stability, and filter cake quality. The results show that when the content of LGSs reached or even exceeded the solid capacity limit of the OBDF, the rheological parameters including the plastic viscosity, gel strength, and thixotropy of OBDF increased significantly. Furthermore, the filtration of OBDF increases, the filter cake becomes thicker, the friction resistance becomes larger, and the stability of emulsion of OBDF also decreases significantly when the concentration of LGSs reached the solid capacity limit of OBDF (6–9 wt% commonly). It was also found that LGSs with a smaller particle size had a more pronounced negative impact on the drilling fluid performance. This work provides guidance for understanding the impact mechanism of LGSs on drilling fluid performance and regulating the performance of OBDF.