The purpose of this analysis is to evaluate the structural integrity of the jet pump assembly of a BWR during the performance of its operational and safety functions. The natural frequencies and vibration modes of the jet pump assembly immersed in water were determined. It was observed that the fourth mode shape was torsional, and its associated resonance frequency was 41.82 Hz. Also, the vibration induced by the flow in the leakage of the slip joint was analyzed with an axisymmetric model. The gap of the slip joint was varied from 0.2 mm until 0.65bmm. A gap between 0.6 and 0.64, would cause flow-induced vibration because this excitation frequency matches with the fourth natural frequency of the jet pump assembly. The above was carried out using computational fluid dynamics, as well as the finite element method, with ANSYS Structural and ANSYS Fluent codes.