Soil and water conservation is an important function of forest ecosystems; however, it remains unclear which forest type is best suited for water and soil conservation under the same site conditions. In order to clarify the soil and water conservation function of different plantations in the northern and southern mountains of Lanzhou city, we investigated several soil and water conservation function indicators (thickness and accumulation of litter, maximum water holding capacity and rate of litter, water holding capacity and water absorption rate of litter, soil infiltration rates, soil water content, soil bulk density, soil porosity, and soil water storage) of five plantation types (Platycladus orientalis plantations (Po), Robinia pseudoacacia plantations (Rp), Populus alba var. pyramidalis plantations (Pa), P. alba var. pyramidalis + R. pseudoacacia mixed plantations (Pa + Rp), and P. orientalis + R. pseudoacacia mixed plantations (Po + Rp)) and evaluated them using the gray correlation method. The results indicated the accumulation of litter varied from 13.50 to 47.01 t·hm−2 and increased in the order of Pa < Rp < Po < Po + Rp < Pa + Rp. The maximum water holding capacity of litter varied from 35.29 to 123.59 t·hm−2 and increased in the order of Pa < Rp < Po < Po + Rp < Pa + Rp. The soil physical properties (soil infiltration, porosity, and bulk density) of mixed plantations were better than those of pure plantations. The soil maximum water storage was significantly different among plantation types (p < 0.05), with an average varying from 3930.87 to 4307.45 t·hm−2, and was greater in mixed plantations than in pure plantations. Gray correlation analysis revealed that mixed plantations had the best conservation function of the five plantation types, followed by broad-leaved plantations and coniferous plantations. This suggests that the planting of mixed plantations dominated by Pa + Rp is therefore recommended in the future construction of plantations in the northern and southern mountains of Lanzhou to realize sustainable forest development.