The paper evaluates the thermodynamical, economical and environmental characteristics of a cogeneration system composed of a gas turbine and a waste heat boiler (system A). Two other systems for increasing power generating efficiency are also evaluated, namely systems B and C, which are constructed by incorporating a regenerative cycle and a dual fluid cycle, respectively, into system A. It has been estimated that system C satisfies an environmental constraint that the nitrogen oxide density exhausted should be less than 100 parts in 106, and that systems A and B also satisfy this constraint if a small amount of steam is injected into the combustor. The power generating efficiencies of systems A and B, in this case, and that of system C have been estimated to be 33.5%, 38.5% and 41.2%, respectively; i.e. the efficiencies of systems B and C can be improved noticeably compared with that of system A. The economics of these systems have also been evaluated based on the value of a profit index, and the systems are all estimated to be economically viable under the conditions assumed. As a result, it has been shown that it is possible to construct cogeneration systems with satisfactory characteristics of both environmental protection and profitability if system A is used in districts where the heat demand is large, system C in districts where the heat demand is small, and system B in districts with intermediate heat demand.