Grape stems are a by-product of wine production which is managed as a waste. Animal feeding arises as a potential alternative. However, its practical use may be compromised by its high lignin content. In this sense, hydrolysis emerges as a strategy to increase fibre digestibility. In addition, due to its high and variable moisture content, it should be dried to prevent microbial deterioration and a washing pre-treatment to reduce sugar content becomes necessary to minimize drying problems due to sugar melting at high temperatures. Within this framework, this study assessed the effect of washing and three different hydrolysis on the nutritive value of grape stems. A factorial design was carried out, with washing (with or without) and hydrolysis (without, enzymatic, alkali, and alkali-enzymatic) as factors. When the washing pre-treatment was not applied, only the alkali hydrolysis process maintained in vitro digestibility, but at the expense of a lower fermentation efficiency. When the washing pre-treatment was applied, fibre contents were similar among hydrolysis processes, but the alkali hydrolysis improved in vitro digestibility with similar fermentation efficiency. In conclusion, the alkali hydrolysis maintained or improved the grape stem nutritive value depending on whether the washing pre-treatment was applied or not.