Considering that variability in immune response genes has been associated with susceptibility to leprosy and with disease severity, leprosy presents clinicopathological variants that are highly associated with the immune response, HLA-G has a well-recognized role in the modulation of the immune response, and polymorphisms at the 3′ untranslated region (UTR) of the HLA-G gene may influence HLA-G production, we studied the polymorphic sites at the 3′ UTR of the HLA-G gene in leprosy and their association with disease severity. We evaluated by sequencing analysis the allele, genotype, and haplotype frequencies of the 3′ UTR HLA-G polymorphic sites (14-bpINDEL/+3003C-T/+3010C-G/+3027A-C/+3035C-T/+3142C-G/+3187A-G/+3196C-G) in 146 individuals presenting reactive leprosy from a highly endemic area, and associated with bacillary load and the type of reactive leprosy. A total of 128 healthy subjects were also studied. Allele, genotype, and haplotype frequencies for the 3′ UTR HLA-G polymorphisms in leprosy patients did not differ from those observed in healthy donors. The +3187A allele was responsible for protection against the development of multibacillary leprosy in a dominant model (AA + AG)/GG, OR = 0.11, P = 0.018), and the +3187A allele and +3187A-A genotype were overrepresented in type II reactive leprosy reaction. The effect of genetic factors on leprosy susceptibility may be hidden by environmental components in highly endemic areas. The HLA-G + 3187A polymorphic site, which is related to unstable mRNA production, was associated with the development of polar forms of leprosy and reactive leprosy reaction.