2024
DOI: 10.29132/ijpas.1448068
|View full text |Cite
|
Sign up to set email alerts
|

Evaluation of YOLOv8 Model Series with HOP for Object Detection in Complex Agriculture Domains

Jale Bektaş

Abstract: In recent years, many studies have been conducted in-depth investigating YOLO Models for object detection in the field of agriculture. For this reason, this study focused on four datasets containing different agricultural scenarios, and 20 dif-ferent trainings were carried out with the objectives of understanding the detec-tion capabilities of YOLOv8 and HPO (optimization of hyperparameters). While Weed/Crop and Pineapple datasets reached the most accurate measurements with YOLOv8n in mAP score of 0.8507 and 0… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 26 publications
0
0
0
Order By: Relevance