Evaluation Study of the Chi-Square Method for Feature Selection in Stroke Prediction with Random Forest Regression
Nurliana Nasution,
Feldiansyah Nasution,
Erlin Erlin
et al.
Abstract:This study aims to develop a more accurate classification model for diagnosing Stroke cases based on various clinical features. Stroke is a serious global health issue, and early detection has a positive impact on prognosis and the prevention of complications. In this research, we combine two main approaches, feature selection using the Chi-Square statistical test and the implementation of Random Forest Regression, to enhance the accuracy of Stroke diagnosis.First, we use the Chi-Square test to evaluate the re… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.