Evaluations of Feature Extraction Programs Synthesized by Redundancy-removed Linear Genetic Programming: A Case Study on the Lawn Weed Detection Problem
Abstract:This paper presents an evolutionary synthesis of feature extraction programs for object recognition. The evolutionary synthesis method employed is based on linear genetic programming which is combined with redundancy-removed recombination. The evolutionary synthesis can automatically construct feature extraction programs for a given object recognition problem, without any domain-specific knowledge. Experiments were done on a lawn weed detection problem with both a low-level performance measure, i.e., segmentat… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.