This paper addresses the confinement of thermonuclear alpha particles and neutral beam injected deuterons in the 15 MA Q = 10 inductive scenario in the presence of the magnetic perturbation caused by the helium cooled pebble bed test blanket module using the vacuum approximation. Both the flat top phase and plasma ramp-up are studied. The transport of fast ions is calculated using the Monte Carlo guiding center orbit-following code ASCOT. A detailed three-dimensional wall, derived from the ITER blanket module CAD data, is used for evaluating the fast ion wall loads. The effect of the test blanket module is studied for both overall confinement and possible hot spots. The study indicates that the test blanket modules do not significantly deteriorate the fast ion confinement.