Chiroptical methods have been proven to be superior compared to their achiral counterparts for the structural elucidation of many compounds. In order to expand the use of chiroptical systems to everyday applications, the development of functional materials exhibiting intense chiroptical responses is essential. Particularly, tailored and robust interfaces compatible with standard device operation conditions are required. Herein, we present the design and synthesis of chiral allenes and their use for the functionalization of gold surfaces. The self-assembly results in a monolayer-thin room-temperature-stable upstanding chiral architecture as ascertained by ellipsometry, X-ray photoelectron spectroscopy, and near-edge X-ray absorption-fine-structure. Moreover, these nanostructures anchored to device-compatible substrates features intense chiroptical second harmonic generation. Both straight-forward preparation of the device-compatible interfaces along with their chiroptical nature provide major prospects for everyday applications.