With the rapid and unregulated nature of urban expansion occurring in Chattogram, Bangladesh, the adoption of urban growth restriction mechanisms such as the urban growth boundary (UGB) can provide a robust framework necessary to direct the development of built-up areas in a way that curtails the growth in environmentally sensitive areas of the city. Using a support vector machine (SVM)-based urban growth simulation model, this paper examines the areas of future contiguous expansion of the city to aid in the delineation of the UGB. Utilizing landcover, topographic, and population density data from a variety of sources for the past twenty years, the SVM method with the radial basis function (RBF) kernel is used to develop a model based on fourteen predictor variables. A grid-search is used to tune the hyperparameters and determine the best performance combination of the hyperparameters for the RBF kernel function used in the SVM. The final SVM model using the best performance combination of the hyperparameters indicates a high percentage agreement of 91.79% and a substantial agreement for the Kappa coefficient of 0.7699. The developed SVM simulation model identifies potential areas that are more likely to undergo urban expansion in Chattogram in the next twenty years and provides aids for a stringent and strict delineation of UGB for this region.